Line 47:
Line 47:
:<math>x^3 = z^3 + \frac14z^2 + \frac1{48}z + \frac1{1728}</math>
:<math>x^3 = z^3 + \frac14z^2 + \frac1{48}z + \frac1{1728}</math>
:<math>y^2 = z^3 + \frac14z^2 + rz + t</math>
:<math>y^2 = x^3 + \left(r-\frac1{48}\right)z + t-\frac1{1728}</math>
:<math>y^2 = x^3 + \left(r-\frac1{48}\right)z + t-\frac1{1728}</math>
Revision as of 12:47, 3 January 2025
General equation
Karl Theodor Wilhelm Weierstraß (31 Oct 1815 – 19 Feb 1897)
g
z
3
+
h
z
2
w
+
j
z
w
2
+
k
w
3
{\displaystyle gz^{3}+hz^{2}w+jzw^{2}+kw^{3}}
+
m
z
2
+
p
z
w
+
q
w
2
{\displaystyle {}+mz^{2}+pzw+qw^{2}}
+
r
z
+
s
w
{\displaystyle {}+rz+sw}
+
t
=
0.
{\displaystyle {}+t\qquad =0.}
Linear transformation
[
z
w
]
=
[
α
β
γ
δ
]
[
x
y
]
{\displaystyle {\begin{bmatrix}z\\w\end{bmatrix}}={\begin{bmatrix}\alpha &\beta \\\gamma &\delta \end{bmatrix}}{\begin{bmatrix}x\\y\end{bmatrix}}}
z
=
α
x
+
β
y
+
ζ
{\displaystyle z=\alpha x+\beta y+\zeta }
w
=
γ
x
+
δ
y
+
η
{\displaystyle w=\gamma x+\delta y+\eta }
Problem
Substitute
α
x
+
β
y
+
ζ
{\displaystyle \alpha x+\beta y+\zeta }
and
γ
x
+
δ
y
+
η
{\displaystyle \gamma x+\delta y+\eta }
for z and w in the general equation, simplify by collecting like terms in respective powers of x and y , and solve for α, β, γ, δ, ζ, η, a and b so that[1]
y
2
=
x
3
+
a
x
+
b
.
{\displaystyle y^{2}=x^{3}+ax+b.}
Eliminating the skew term
Sometimes the Weierstraß equation is given in the form [2]
w
2
+
z
w
=
z
3
+
r
z
+
t
{\displaystyle w^{2}+zw=z^{3}+rz+t}
with an extra skew term
z
w
{\displaystyle zw}
. Let
y
=
w
+
1
2
z
{\displaystyle y=w+{\frac {1}{2}}z}
and complete the square.
y
2
−
1
4
z
2
=
z
3
+
r
z
+
t
{\displaystyle y^{2}-{\frac {1}{4}}z^{2}=z^{3}+rz+t}
y
2
=
z
3
+
1
4
z
2
+
r
z
+
t
{\displaystyle y^{2}=z^{3}+{\frac {1}{4}}z^{2}+rz+t}
Now let
x
=
z
+
1
12
{\displaystyle x=z+{\frac {1}{12}}}
and complete the cube, viz.
x
3
=
z
3
+
1
4
z
2
+
1
48
z
+
1
1728
{\displaystyle x^{3}=z^{3}+{\frac {1}{4}}z^{2}+{\frac {1}{48}}z+{\frac {1}{1728}}}
y
2
=
x
3
+
(
r
−
1
48
)
z
+
t
−
1
1728
{\displaystyle y^{2}=x^{3}+\left(r-{\frac {1}{48}}\right)z+t-{\frac {1}{1728}}}
y
2
=
x
3
+
(
r
−
1
48
)
(
x
−
1
12
)
+
t
−
1
1728
{\displaystyle y^{2}=x^{3}+\left(r-{\frac {1}{48}}\right)\left(x-{\frac {1}{12}}\right)+t-{\frac {1}{1728}}}
y
2
=
x
3
+
[
r
−
1
48
]
x
+
[
t
−
1
12
r
+
1
864
]
{\displaystyle y^{2}=x^{3}+\left[r-{\frac {1}{48}}\right]x+\left[t-{\frac {1}{12}}r+{\frac {1}{864}}\right]}
This is the normal Weierstraß form with
a
=
r
−
1
48
{\displaystyle a=r-{\frac {1}{48}}}
and
b
=
t
−
1
12
r
+
1
864
{\displaystyle b=t-{\frac {1}{12}}r+{\frac {1}{864}}}
, and obviously rational points are mapped to rational points with the rational linear transformation
y
=
w
+
1
2
z
{\displaystyle y=w+{\frac {1}{2}}z}
and
x
=
z
+
1
12
{\displaystyle x=z+{\frac {1}{12}}}
.
↑ Arnold Kas. “Weierstrass Normal Forms and Invariants of Elliptic Surfaces.” Transactions of the American Mathematical Society, vol. 225, Jan 1977, pp. 259-266. PDF
↑ LMFDB Elliptic curves over
Q
{\displaystyle \mathbb {Q} }
. https://www.lmfdb.org/EllipticCurve/Q/