Quintic point group operation: Difference between revisions
Undo revision 220 by Rational Point (talk) Tag: Undo |
→Goals and objectives: Point averaging |
||
| Line 33: | Line 33: | ||
The goal is to reach the point <math>-P</math> from the point ''P'' alone, and to reach the point <math>P+Q</math> from the points ''P'' and ''Q'' if possible, and if so, by the shortest possible path of computation, i.e., using the least number of elliptic curve fittings. | The goal is to reach the point <math>-P</math> from the point ''P'' alone, and to reach the point <math>P+Q</math> from the points ''P'' and ''Q'' if possible, and if so, by the shortest possible path of computation, i.e., using the least number of elliptic curve fittings. | ||
=== Point averaging === | |||
Point averaging is possible. | |||
:<math>\frac{P+Q}2=-\frac14\big(-2(P+Q)\big)</math>. | |||
Revision as of 00:26, 7 January 2025
Suppose we have a quintic curve in the form
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y^2=px^5+qx^4+rx^3+sx^2+tx+u} .
Through any four points on a quintic curve in this form, an ordinary elliptic curve in the form
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y^2=ax^3+bx^2+cx+d}
may be fitted, and this elliptic curve must intersect the quintic curve at a fifth point, uniquely determined, up to sign of the y-axis.
The quincunx equations
If P, Q, R, S and T are the five points of intersection between the quintic curve and the fitted elliptic curve, permitting multiplicity, let
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P+Q+R+S+T=O} ,
where O is the additional “point at infinity” considered to lie on the curve and serve as an identity for its additive point group operation.
Curve fittings through one point
Choose a point P and solve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4P+T=O} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3P+2S=O} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2P+3R=P+4Q=O} by curve-fitting. Now Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T=-4P} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=-\frac32P} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R=-\frac23P} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q=-\frac14P} .
Curve fittings through two points
Choosing points P and Q it is possible to solve for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2P+2Q+T=O} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P+Q+3R=O} by curve-fitting: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T=-2(P+Q)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R=-\frac13(P+Q)} , if scalar division is permitted. Also Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2P+Q+2S=O} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P+2Q+2U=O} so Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=-\left(P+\frac12Q\right)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=-\left(\frac12P+Q\right)} , etc.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{P,Q\}\longrightarrow\left\{-2(P+Q),-\frac13(P+Q),-\left(P+\frac12Q\right),-\left(\frac12P+Q\right), -(3P+Q),-(P+3Q)\right\}}
Goals and objectives
The goal is to reach the point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -P} from the point P alone, and to reach the point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P+Q} from the points P and Q if possible, and if so, by the shortest possible path of computation, i.e., using the least number of elliptic curve fittings.
Point averaging
Point averaging is possible.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{P+Q}2=-\frac14\big(-2(P+Q)\big)} .
