J-invariant
From Elliptic Curve Crypto
The j-invariant of an elliptic curve in Weierstraß normal form
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y^2=x^2+ax+b}
is defined to be
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j=\frac{6912a^3}{4a^3+27b^2}}
or
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j=\frac{-110592a^3}{\Delta}}
in terms of the elliptic discriminant Δ [1].
- ↑ Wolfram MathWorld: j-Invariant. https://mathworld.wolfram.com/j-Invariant.html
